Maize is one of the world’s most widely grown crops and is essential to global food security. But like other plants, its growth and productivity can be limited by the slow activity of Rubisco, the enzyme responsible for carbon assimilation during photosynthesis. In a recent study published in the Journal of Experimental Botany, scientists from the Boyce Thompson Institute (BTI) demonstrated a promising approach to enhancing Rubisco production, thus improving photosynthesis and overall plant growth.
The study involved the transgenic expression of three key proteins, Rubisco Accumulation Factor 2 (Raf2) and the large and small Rubisco subunits. By overexpressing these proteins, the researchers increased Rubisco content, accelerated carbon assimilation, and boosted plant height in maize.
"Our findings demonstrate the potential of modifying Rubisco assembly to improve crop productivity," said Kathryn Eshenour, a BTI researcher and first author of the study. “By altering the expression of these proteins, we can unlock maize's capacity to photosynthesize more efficiently and grow more robustly, even under challenging environmental conditions."
The research team found that Raf1 and Raf2, although acting at different steps of Rubisco assembly, could independently enhance Rubisco abundance and plant performance. This opens possibilities for further improvements by stacking the traits together, potentially leading to even greater photosynthetic capacity.
Interestingly, the transgenic plants also showed improved resilience to chilling stress, a common environmental challenge that can severely impact crop yields. The researchers observed that these plants maintained higher photosynthetic rates during cold exposure and recovered more rapidly after the stress subsided.
The team's innovative approach holds exciting possibilities for other crops. Many staple foods with similar photosynthetic pathways to maize, such as sorghum, millet, and sugar cane, could potentially benefit from the approach used in this study, leading to improvements in photosynthetic efficiency and yield.
"This promising technology is one of several being used to enhance photosynthesis in crop plants," said David Stern, a professor at BTI and lead author of the study. "By continuing to explore the intricacies of Rubisco assembly and its regulation, we can improve this part of a much-needed toolkit for enhancing photosynthesis across a wide range of crops."
As food security continues to remain a pressing issue and the impacts of climate change intensify, the need for more productive and adaptable crops has never been greater. This research highlights the transformative potential of plant science-based solutions in addressing global challenges, exemplifying BTI's commitment to shaping a future where agriculture thrives, biodiversity is preserved, and humanity benefits from a healthier, more sustainable world.
About Boyce Thompson Institute
Founded in 1924 and located in Ithaca, New York, BTI is at the forefront of plant science research. Our mission is to advance, communicate, and leverage pioneering discoveries in plant sciences to develop sustainable and resilient agriculture, improve food security, protect the environment, and enhance human health. As an independent nonprofit research institute affiliated with Cornell University, we are committed to inspiring and training the next generation of scientific leaders. Learn more at BTIscience.org.
Contact details
Related topics
Related news
Bioeconomy in Colombia: The Race to Save Colombia's Vital Shellfish
Genetic study reveals piangua shellfish decline in Colombia due to overharvesting, stressing the need for sustainable conservation strategies.
Unlocking the Genetic Mysteries of Modern Roses
New study uncovers rose genetics, aiding breeders in cultivating beautiful, hardy varieties suited to diverse climates and challenges.
The Unexpected Protein Connection in Maize Growth and Defense
New BTI research finds COI1 proteins crucial for maize growth, unlike in other plant species, paving the way for enhanced agricultural productivity.
How Viruses Move Through Insects for Transmission of Diseases
A new study reveals the mechanisms viruses use to move through insect hosts, offering insights that could help prevent the spread of insect-borne diseases in humans and livestock.
Faculty Cluster Hire: Promoting Collaboration and Addressing Gender Bias in Academic Hiring
BTI's cluster hire strategy challenges traditional academic hiring, boosting female representation and drawing diverse scientific backgrounds to enhance collaborative research.