A new perspective published in the journal Nature Chemical Biology uncovers a previously unknown biochemical recycling process in animals. The authors review a flurry of recent papers demonstrating that animals extensively recycle biochemical waste to produce novel chemicals that play key roles in biology, from regulating behavior to development and aging.
These studies show that the genes previously thought to code for carboxylesterases, enzymes that hydrolyze esters, actually play a pivotal role in assembling a wide range of new metabolites from building blocks generally considered “cellular waste.” Surprisingly, the so-called carboxylesterases were found to contribute to the formation of esters and amide bonds, a function opposite to that predicted by computational algorithms.
“This discovery reveals that our understanding of biochemistry remains largely incomplete,” says the perspective’s lead author, Frank Schroeder, a professor at Boyce Thompson Institute.
This research has the potential to revolutionize our understanding of how animals, including humans, function.BTI Professor Frank Schroeder
Recent investigations indicate that animals and humans may produce over 100,000 distinct chemicals, most of which have not been investigated. This unknown structure space is a treasure trove of chemicals, which may hold the key to understanding many biological processes. One major challenge to understanding how these metabolites contribute to survival is that the enzymes that produce them are also unknown.
“The discovery of this biochemical recycling mechanism opens up exciting new avenues for future research, with the potential to dramatically accelerate the structural and functional annotation of unknown metabolites,” says Chester Wrobel, a graduate student in the Schroeder lab and co-author of the perspective.
About Boyce Thompson Institute
Founded in 1924 and located in Ithaca, New York, BTI is at the forefront of plant science research. Our mission is to advance, communicate, and leverage pioneering discoveries in plant sciences to develop sustainable and resilient agriculture, improve food security, protect the environment, and enhance human health. As an independent nonprofit research institute affiliated with Cornell University, we are committed to inspiring and training the next generation of scientific leaders. Learn more at BTIscience.org.
Contact details
Related topics
Related news
Ascribe Bio’s Phytalix® Achieves Stunning Success Against Devastating Rice Disease
Phytalix field trials in rice demonstrated superior effectiveness, reducing Bacterial Leaf Blight severity by over 80%—which is 20% better than existing treatments
Your Gut Bacteria Are in a Chemical Tug-of-War with Your Body
A recent study uncovers how gut bacteria and the body balance bile acids, influencing cholesterol and fat metabolism, with a potential impact on a range of diseases.
Diet, Microbes and Fat: A New Pathway Controlling Levels of Body Fat and Cholesterol
Research explores how gut bacteria team up with the host body to regulate bile acids, essential molecules that control digestion, cholesterol levels, and fat metabolism.
Hornwort genomes provide clues on how plants conquered the land
New research reveals insights into the genetic blueprints of hornworts, uncovering fascinating details about plant evolution and the early days of life on land.
Tiny Plants Reveal Big Potential for Boosting Crop Efficiency
Scientists have long sought ways to help plants turn more carbon dioxide (CO₂) into biomass, which could boost crop yields and even combat climate change. A group of unique, often overlooked plants...