Watermelon is a globally significant agricultural product, both in terms of the total amount produced and the total economic value generated.
Scientists at the Boyce Thompson Institute have constructed a comprehensive “super-pangenome” for watermelon and its wild relatives, uncovering beneficial genes lost during domestication that could improve disease resistance and fruit quality of this vital fruit crop.
We aimed to delve deeper into the genetic variations that make watermelons so diverse and unique. Our findings not only provide insights into the evolutionary journey of watermelons but also present significant implications for breeding and disease resistance.Professor Zhangjun Fei, the study’s lead author.
The watermelon super-pangenome was built using reference genome sequences and genome resequencing data from 547 watermelon accessions spanning four species – cultivated watermelon (Citrullus lanatus) and its wild relatives C. mucosospermus, C. amarus, and C. colocynthis.
Analyses of the super-pangenome revealed that many disease-resistance genes present in wild species were lost during domestication, as early farmers selected for fruit quality traits like sweetness, flesh color, and rind thickness. “These beneficial genes could be reintroduced into modern cultivars to breed more resilient watermelon varieties,” noted Fei.
A key discovery of the research, recently published in the Plant Biotechnology Journal, was the identification of a tandem duplication of the sugar transporter gene ClTST2 that enhances sugar accumulation and fruit sweetness in cultivated watermelon. This genetic variant was rare in wild watermelons but was selected during domestication.
“The super-pangenome provides a valuable genetic toolkit for breeders and researchers to improve cultivated watermelon,” said Fei. “By understanding the genetic makeup and evolutionary patterns of watermelons, we can develop varieties with enhanced yield, increased disease resistance, and improved adaptability.”
About Boyce Thompson Institute
Founded in 1924 and located in Ithaca, New York, BTI is at the forefront of plant science research. Our mission is to advance, communicate, and leverage pioneering discoveries in plant sciences to develop sustainable and resilient agriculture, improve food security, protect the environment, and enhance human health. As an independent nonprofit research institute affiliated with Cornell University, we are committed to inspiring and training the next generation of scientific leaders. Learn more at BTIscience.org.
Contact details
Related topics
Related news
Ascribe Bio’s Phytalix® Achieves Stunning Success Against Devastating Rice Disease
Phytalix field trials in rice demonstrated superior effectiveness, reducing Bacterial Leaf Blight severity by over 80%—which is 20% better than existing treatments
Your Gut Bacteria Are in a Chemical Tug-of-War with Your Body
A recent study uncovers how gut bacteria and the body balance bile acids, influencing cholesterol and fat metabolism, with a potential impact on a range of diseases.
Diet, Microbes and Fat: A New Pathway Controlling Levels of Body Fat and Cholesterol
Research explores how gut bacteria team up with the host body to regulate bile acids, essential molecules that control digestion, cholesterol levels, and fat metabolism.
Hornwort genomes provide clues on how plants conquered the land
New research reveals insights into the genetic blueprints of hornworts, uncovering fascinating details about plant evolution and the early days of life on land.
Tiny Plants Reveal Big Potential for Boosting Crop Efficiency
Scientists have long sought ways to help plants turn more carbon dioxide (CO₂) into biomass, which could boost crop yields and even combat climate change. A group of unique, often overlooked plants...