A new study challenges the common theory that the devastating potato blight pathogen Phytophthora infestans originated in Mexico. Researchers meticulously reconstructed its global migration history and found it likely originated in the South American Andes before spreading globally. This research provides significant insights into the pathogen's evolutionary journey, which is crucial for developing better disease management strategies worldwide.
P. infestans is infamous for causing the Irish potato famine in the 19th century, yet it remains a major threat to potato crops globally. Understanding its migration and genetic diversity is key to combating its spread. Focusing on tracing the pathogen's migration towards Colombia, the researchers used advanced statistical methods to reconstruct the likely migration routes by analyzing genotypic data from 1,706 isolates collected worldwide.
The study proposes that P. infestans originated in Peru before migrating north to Colombia and Mexico and then spreading to the United States, Europe, and Asia. This contrasts with earlier theories suggesting a Mexican origin followed by spread to South America. Interestingly, the study found no evidence of the pathogen returning to northern South America after these migrations.
"Even though the current Colombian population originated from Peru, the apparent lack of repeated introductions from neighboring countries suggests internal migrations might be more prevalent," said Camilo Patarroyo, first author of the study recently published in Phytopathology. "This should be carefully monitored to prevent the spread of new variants that could complicate disease control."
The study also emphasized the importance of international collaboration in tracking and managing P. infestans. The research underscores the necessity of global cooperation in tackling plant pathogens, with organizations like EuroBlight, USABlight, and Tizón Latino playing vital roles.
One of the standout findings was the strong geographic signal observed in the pathogen's genetic data, supporting the hypothesis of rare, significant migration events rather than continuous, small-scale movements. This insight is crucial for developing targeted control measures that focus on preventing these rare but impactful migrations.
By understanding the historical migration patterns of P. infestans, scientists and farmers can better predict and prevent future outbreaks. This knowledge also aids in breeding more resistant potato varieties, ultimately contributing to global food security.
Silvia Restrepo, lead author of the study and president of the Boyce Thompson Institute, highlighted the broader impact, stating, "Our work not only unravels the past migrations of P. infestans but also provides a framework for predicting its future movements. This is essential for global efforts to safeguard potato crops against this persistent threat."
About Boyce Thompson Institute
Founded in 1924 and located in Ithaca, New York, BTI is at the forefront of plant science research. Our mission is to advance, communicate, and leverage pioneering discoveries in plant sciences to develop sustainable and resilient agriculture, improve food security, protect the environment, and enhance human health. As an independent nonprofit research institute affiliated with Cornell University, we are committed to inspiring and training the next generation of scientific leaders. Learn more at BTIscience.org.
Contact details
Related topics
Related news
Your Gut Bacteria Are in a Chemical Tug-of-War with Your Body
A recent study uncovers how gut bacteria and the body balance bile acids, influencing cholesterol and fat metabolism, with a potential impact on a range of diseases.
Diet, Microbes and Fat: A New Pathway Controlling Levels of Body Fat and Cholesterol
Research explores how gut bacteria team up with the host body to regulate bile acids, essential molecules that control digestion, cholesterol levels, and fat metabolism.
Hornwort genomes provide clues on how plants conquered the land
New research reveals insights into the genetic blueprints of hornworts, uncovering fascinating details about plant evolution and the early days of life on land.
Tiny Plants Reveal Big Potential for Boosting Crop Efficiency
Scientists have long sought ways to help plants turn more carbon dioxide (CO₂) into biomass, which could boost crop yields and even combat climate change. A group of unique, often overlooked plants...
Study Reveals Role of Allele Dosage in Improving Sweetpotato Traits
BTI study unveils how allele dosage impacts sweetpotato traits, offering new strategies for breeders to enhance yield and nutritional value.